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O P T I C A L  R E C O R D I N G  O F  S H E A R  F L O W  O F  A N E M A T I C  

L I Q U I D  C R Y S T A L  I N  A G A S D Y N A M I C  F L O W  

G. M. Zharkova and S. I. Trashkeev UDC 532.783 

The theoretical and experimental study of the shear flow of non-Newtonian structured liquids, which include nematic 

liquid crystals (NLCs), is of scientific interest in itself and has practical potential. 

As mentioned in [1], the use of liquid crystals in aerodynamic experiments can lead to new diagnostical methods, which 

in a number of  cases are more informative and simpler than other known methods, In [1] we considered the case when a thin 

NLC layer was deposited on the surface of a model with gas flowing over it. The shear flow occurring in the NLC and the 

corresponding reorientation of the long axes of the crystal molecules (the direction n) were computed numerically. From the 

data we found the optical response of the entire system. In the resulting algorithm such characteristics as the velocity of the 

gas flow on the free surface of the NLC and the shear stress constant are calculated from the change in the phase of the 

extraordinary light wave as it traverses the layer. 

One of the difficulties in the practical implementation of the method proposed in [1] is that it requires a thin layer of 

NLC with a homeotropic (normal) orientation of  the director on a solid substrate and with a free upper boundary, since the 

crystal forms in drops. It is of interest, therefore, to consider the case of a planar (tangential) geometry, for which n on the 

surface (n(z = 0) = n o) is orthogonal to both the direction of gas flow and the velocity gradient (Fig. 1; this configuration 

may be disrupted in the bulk n(z ~ 0)). 

The shear flow of a NLC in the geometry given above is studied here. The difference between the problem solved in 

[1] from that formulated here is that the deformation of the director no longer takes place in one plane. As a result, two angles 

must be considered for the description of the reorientation on the NLC molecules: the polar angle 0 and the azimuthal angle 

(Fig. 1). Moreover, as becomes clear below, if for any reason the director cannot emerge form the x, y plane (th = 0), then 

reorientation with respect to ~p does not appear either (~ = 0). 

The vector n is expressed in terms of 0 and ~ as (Fig. 1). 

n = {nx,ny,n z} = {cos0cos~, cos0sin~, sin0}; (1) 

the velocity vector has one nonzero component 

v = {o,~,o}. 
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Since the problem is one-dimensional, we assume that all the desired functions depend only on the time t and one spatial 

variable z. The velocity gradient w has one component 

w = ( O , O , o 5 / O z } ,  ~ = o 5 / o z  -_ w. 

The equations necessary for describing the reorientation of the director by the shear flow are obtained from the 

Erickson-Leslie equations [2], which are written in general form as 

p + , , % )  = / ,  + __z%, t,.i = x,y,=. 
(2) 

H e r e  p is the density of the liquid; f is the volume density of the forces acting on the NLC (in our case f = - V  p (p is the 

pressure) and below we consider the case with Vp = 0 and, hence, f = 0); the viscous tensor is 

Y# = cttnin'Ak,.nknm + a2rt~'NJ + a3~Jgi 
+ a4Aij 4- asnin,A,i + a6Aank~; 

oq are the viscous parameters of the NLC; and 

= d-T + 5 % ;  A,~ = 2 to5 + ~ , ) '  

% = 71 - 0xi)" 

Equations describing the motion of the director must be added to (2) in order to close the system. Ignoring the inertial 

terms, in accordance with the variational principle [2] we obtain 

a , ~ r  ,~s" = [n,R 1 i + iLn,, (3) 

where X L is an indeterminate Lagrangian multiplier, which ensures satisfaction of the condition that n is unique; 
+ ny 2 + n22) 112 = 1; and 5 r" is the density of free energy. In the absence of  external fields 5 r" has the form 

1 2 
,if" = 2{Kl(div n) + K2(n,rot n) 2 + K3In,rot n 12}. 

t n I = (nx 2 

Here R is the dissipative force expressed in terms of the vector N and the symmetric part mji o f  the velocity-gradient tensor. 

(Yl = a3 -- rr2'Y2 = a6 -- aS)" 

All of  the relations are simplified in the given case of  the one-dimensional shear flow of  a NLC, when the desired 

functions depend only on one coordinate z. Equation (2) thus becomes 

~v 01~ 
....z = " /  (4) P O t  Oz " 

Only one component is needed: (2 w} 

+ o, + + % + +  ~ 
(5) 
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The values of ~ij and Aij , are written as a matrix with two nonzero elements, 

OJ..  ~ 

r 

0 0 

0 0 

W 

0 - 2  

0 

W 
, A # =  

0 [i ~ 0 

w 

2 
0 

(6) 

and the vectors N and R are written as 

Ia,~ any w an= w 1 
N = ["~t' Ot -- n'~'Tt + n2'l 

R = [ ) , , a t ,Y , (a t  - n=-~ + Y27n,Yl [ -~t  + ,2)  

The equation for the density of free energy 9" also simplifies to 

+r~Lk~ ) ko=) k o')] 

(7) 

(8) 

Only one term must be left in the variational relation (3): 

a 6~r 6~- 
= [n,R lj + 2Ln. (9) 

az a(a,t/az) an~ 

On substituting all the necessary quantities (5)-(8) into (4) and (9) and going over to angular notation of  the vector n 

(1), we obtain the desired system of equations, which describe the shear flow of a NLC layer: 

ao = F ( O ) ~  + I a~e)(ao'~ 2 i aG(o)(a9i2 

1 au 
-- -2 _.zaz (y t + Y2c~ , 

_- -  s n Ocos , 
at az L az j 

a. a to.  ao o 1. 
P at = ~ (o,~) + ~ q ( , ~ )  + ~tp(O,~) 

J 

(10) 

Here 

F(O) = KlCOS2O -I" K3sin2O, 

G(O) = (K2cos2O + Kasin2O)cos20, 

I 
g(O,@) = ~ [(2alsin28 + a 3 + a6)cos2Osin2~o + a 4 

+ (a s - az)sin20 ], q(O,@) = (cx3cos20 - a2sin20)sin@, 

t~ 2 
p(O,@) = ~-sin20cos@. 

(II) 
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When n is written in the form (1) it is no longer necessary to introduce the Lagrangian multiplier kL into (9), since the 

normalization condition I n I = 1 is satisfied automatically. From the second equation it follows that for 0 = 0 the 

azimuthal angle 9 = 0, i.e., it does not "feel" the influence of the flow. 

Even though it is simpler than the initial system, the system obtained is still fairly complicated for analytical study. 

Henceforth Eqs. (10) and (11) will be solved numerically, in much the same way as in [1]. 

How the NLC behaves under the given conditions can be understood if the system (10), (11) is simplified further and 

the analytical solution is found. For this purpose we make the following assumptions. 
1. Let us consider the steady-state case. All the desired quantities are assumed to be independent of  time: 0/0t = 0. 

2. The velocity gradient is nearly linear: w = const. In [1], when calculating the velocity profiles for the reorientation 

of a director from a homeotropic to a planar structure by a shear flow, we showed that the difference from linearity is small. 

3. The flow is fairly strong and polar-angle saturation is attained 0 = 00, where 00 is determined from the first equation 

of (10), if the elastic forces are ignored: 

Yl c0s28 o = --},--~. 

If  we take into account the Parody relation [2] for the viscosity coefficients 

r -- C~5 ---- 0:2 + Cr 3, 

we obtain 
a 3 

tg20~ - a2" (12) 

NLC. 

form 

The angle O 0, as a rule, is small and is of  the order of 10 ~ 
4. The layer thickness L is assumed to be fairly large, greater than the characteristic changes of  orientation k in the 

5. For simplicity we take the case of a single constant K 1 = K. 
With the above assumptions the system of equations (10) is reduced to one equation for the azimuthal angle ~ in the 

Kd ( d~o ) a2 w sin200 
c~176 2 cos~  --- 0 

or, taking Eq. (12) into account, we finally write 

d2~~ + /t2cos~o 0, 
dz 2 (13) 

where 

/t2 - 2 2 aV'~% (14) 

and X is the characteristic dimension for which the main change of  orientation occurs. 
The expression for k contains (tx2~x3) 1/2. As a rule, the signs of ~x 2 and a 3 are negative [3] and steady-flow calculations 

pose no problems. In some types of NLC [3], however, tx 3 > 0 and (13) becomes meaningless in that case. It is known form 

experiments that crystals for which cx 3 > 0 [3] cannot undergo laminar flow at any velocity. 
Equation (13) is solved analytically. To do this we multiply it by d~/dt and integrate and as a result the order of  the 

equation decreases. 
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d~a _ + ,/~.(v 2 - p2sin~)l/2 
dt - -  (15) 

(v is a constant which is determined from the boundary conditions). Further integration leads to an elliptic integral. In our case 

we can use the condition that the characteristic changes of orientation in the crystal are small in comparison with the thickness 

L (L > > X) and set the boundary condition as z --- r In other words, far from the solid surface we expect to have ~ = 7r/2 

and &c/dz = 0. The u = # and, therefore, (15) becomes 

d~v 
f (  + cl 1 - s i n ~ o )  1 / 2  - -  - -  

(C I is a constant which is determined from the boundary condition). 

After the final integration we have 

~v = - -  4arctg tg exp( •  . (16) 
2 

We have allowed for the fact that ~a = 0"for z = 0. The + signs correspond to the rotation of NLC molecules to the right or 

left. For definiteness we take the minus sign. Note that tan 7r/8 differs from ~r/8 by a mere 5 %. Accordingly, if we do not 

require high accuracy, we can rewrite the solution (16) as 

~o = ~-11 - exp(-/ ,z)  1. (17) 

The flow causes reorientation of the director lying close to the xy plane with a characteristic transition-layer thickness 

k(w) (14). 

We estimate the value of X from the example of two NLCs, p-azoxyanizole (PAA) and N-(n-methoxybenzylidene)-n- 

butylaniline (MBBA). For PAA [3] tx 2 - -0 .066  P, c~ 3 - - 0 .004  P, and K - 5.6.10 -7  dyne. The flow velocity gradient 

is w = 100 (cm/sec)/cm, whereby XpA A -- 6 /zm. For MBBA [3] cr 2 - - 0 . 78  P, ~3 - 0 .01  P, and K - 5.8.10 -7 dyne, 

whereby kpA A --2.6 gm. 

It is of interest to study the variation of the apparent viscosity na as a function of the velocity gradient w. The following 

iteration step must be carried out in order to do this. In the steady-state case, the third equation of (10) gives 

wg(Oo,~) = b, 

where b is the shear stress constant. 

The apparent viscosity is determined from 

% = bL/%(L). (18) 

In turn, 
L 

t. d z  

o ) 
o 

(19) 

Substituting (19) into (18), we obtain 

(20) 
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Fig. 2 

If we assume that 00 < < 1, then Eq. (20) becomes 

L ] - l  

v/. = ~" f ( %  + %)sin2p + % 
0 

(21) 

When the velocity gradient (or the velocity of the upper boundary) is low, little reorientation occurs and, therefore 

= 0, whereupon it follows from (21) that 7/a - c~4/2. Conversely, for high velocity ~ = 7r/2 and ~a = (c~3 + ~ + c~6)/2' 
The qualitative dependence ~Ta(W), which follows from Eqs. (17) and (21), is shown in Fig. 2 (we do not give the calculation 
since it is not needed below). 

The characteristic values of~Ta for a PAA nematic liquid crystal are 

rlo(~'.''-" 0) =3.8 cP, *l~(~ . . . .  ) -- 1.9 cP 131. 

It is now necessary to consider the optical response of the given system to the shear action. The information obtained 

may consist of  the phase and polarization when a beam of light is transmitted through the NLC, the polarization when a light 

beam is reflected from the free surface of the layer, or by combination of these methods. Compared to polarization changes, 
phase changes are technically more complicated since a reference beam is required but the pertinent calculations are generally 
simpler. Nevertheless these complexities can be eliminated, as is shown below. 

When choosing the measuring procedure we must note that with a flow over the layer the liquid begins to leak, causing 

the layer thickness L to decrease, and L rather difficult to monitor. One way of overcoming this disadvantage was indicated 

in [1], but this requires measurements in two layers lying close together or use of a light ray reflected from the free surface. 
The wave characteristics must be calculated on the basis of  eh reduced Maswelrs equations, since the geometrical- 

optics approximation used in [1] may be unsuitable for small values of k and L. 

A system of equations describing the propagation of a light wave through an arbitrarily oriented NLC sample is given 
in [4]. In our case, unlike that in [4], the transmitted wave is purely diagnostic, fairly low-power, and causes no additional 
distortions in the medium. For simplicity we assume that the tramillumination is at a low angle to the surface of the later. The 

angle 0 o < <  1, i.e., the nematic film is nearly planar in orientation throughout its volume. The equations from [4] then 
become 

d A  w t  
�9 a 

- i 2-~%n(n,A), (22) 
dz 

where the amplitude A(z) is related to the electric field E of the wave by E = A(z)exp ( i k z -  ioJ0 (o~ is the frequency of the 
incident wave, k = o~/c is the wave vector, c is the speed of light in vacuum, n o is the refractive index for an ordinary wave, 

and e a is the dielectric anisotropy at the frequency co). Since absorption is ignored, Eq. (22) has one integral (A, A*) = const, 

which accords with the law of  conservation of energy. 
If  we rewrite (22) by coordinates with allowance for (1) and introduce the dimensionless variable ~ = z/L, we obtain 

d A  
d~ - lq 'cos~o(A cos~o + Asin~o), 

= lq'sin~o(Axcos~o + Asin~,), (23) 
d~ 

0 ~ < ~ < I .  
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Fig. 3 Fig. 4 

For definiteness we take ~ from (17). 

~o = 2[1 - exp( - / t '~ ) l -  

Here q' = e a k L / 2 n n ; / d  = :(L. 

System (23) is rather complicated and its solution cannot be found analytically for an arbitrary value of ~o(z). Numerical 
computation is necessary here. 

Before undertaking this computation, we recast the system (23) into a more convenient form. We redesignate the 
desired functions as 

Ai = ( A A *  - AxZ~ ) / I  o, 

i§ = (A'A7 + A ~ A ) / I ~  (24) 
i- = i (AA~  - A * A ) / I o ,  

where 

A A*. + A A* = I o = const; (25) 
�9 y Y 

I o is proportional to the intensity of the wave at entry into the crystal and is conserved during propagation in it. Using the 
energy integral (25), we can reduce the number equations to three. Substituting (24) into (23), we obtain 

dAi di + 
cl~ - q'Csin2~,, ~ = q'i-cos2~, 

di- (26) 
cl~ - -q'(Aisin2~o + i+cos2~o). 

The phase difference of the wave A x and Ay will be useful. It can be easily determined from the values of  i + and i - .  
Writing A in the form of complex quantities with phases ,Irx(~) and '~'y(~), 

A = I~1 exp [e~O (~) 1, A - I A l e x p  [~Z,,(~) l, 

we have 

t + = 2 IAA~'Icos(~, - ~,), 
I o 

i- = 2[4'aelsin(~,x - ~,) 
10 

and accordingly for the phase difference we have 
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A~ 

I- 

1+,~ § 

Fig. 5 Fig. 6 

A~I, = ~,, - ~ = a r c t g ( i - / i ~ ' ) .  

Equation (26) was solved numerically with the initial conditions 

a , l :=0  = - ! ,  ,"1:=0 = 0, = o, 

which are equivalent to the incidence of an extraordinary wave on the sample (Fig. 1). 

From the numerical computation we obtained ix(G) = AxAx*/I 0 for the propagation of a wave inside the sample (Fig. 

3). For the computation we took the parameters/~' = 3 and 10, q = 10, which corresponds to a MBBA nematic liquid crystal 

with thickness L - 15/zm and w - 26 and 300 cm/sec/cm. Figure 4 shows the phase difference Lxff(~) to within 7r for the 

same parameters. Figures and 4 indicate that/z' > >  1 for saturation, i.e., when ~ = ~-/2 in most of  the volume, the intensity 

and phase difference inside on the free-surface side also tends to a constant, linear dependence. Otherwise (/~' - 1), the wave 
characteristics are rather involved functions of the spatial variable ~. 

Figures 5 and 6 show the values of  6i  and 1 + i + at exit from the sample as functions of g '  for various values of q'. 

The values of Ai was chosen because it is usually more convenient to measure the intensity difference in an experiment. 

The quantity 1 + i + is important because it corresponds to the interference pattern that can be observed if the 

polarization plane is rotated in one of the components of the wave and the beams are superposed. Thus, 

(IAIc'v', �9 + tm [e"r  -'~, + I A v l e - ' ~ : ) / I o  = I + i § 

This quantity is of  interest to us in regard to convenience of measurements. As is seen from Figs. 5 and 6, the desired relations 

have a rather complicated behavior. The greatest trouble is that they are nonmonotonic. During processing of the experimental 

data this circumstance can cause indeterminacy in the determination of/z '  and q'from the measured values of Ai and 1 + i +. 

The above computations thus establish a relation between the mechanical changes caused in the shear flow of a NLC 

layer by the motion of  the upper free surface as a result of an aerodynamic flow and the changes in the diagnostic light beam 

transilluminating the liquid-crystal medium. 

This treatment enables us to image a scheme for specific measurements. One result of the work is as follows. Using 

a diagnostic beam and getting two independent characteristics of  the transmitted wave at the exit, we can measure, e.g., the 

velocity vy(L) of the upper boundary of the NLC layer, which cannot be determined without knowing the thickness L of the 

coating, which is why the second parameter of the transmitted wave was necessary. 

Technically, this means that the emerging beam is presplit into two parts, One part passes through a plarizer, with axis 

oriented in the x direction, and the other part also passes through a polarizer, but with its axis oriented in the y direction. One 

beam is taken from each pair and the intensity difference Ai is measured. The beam remaining after the polarization plane is 

rotated in one of  them come together and give us the interference intensity 1 + i+. 

In summary, the result of our calculations reduce to the solution of a direct problem, establishing a relation between 

the mechanical parameters of the shear flow of  a NLC layer with the optical response of a system, subjected to the action of 
an aerodynamic flow. 
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